Basic Auditory Perception

Publications

Auditory Alarms

Burdick, K., Yang, S., Lopez, A. E., Wessel, C., Schutz, M., Schlesinger, J.J. (2023). Auditory roughness: a delicate balance. British Journal of Anaesthesia, 131 (4), 649-652.
Anderson, C. J., Sreetharan, S., Elizondo López, A. E., Schlesinger, J. J., & Schutz, M. (2023). Improving auditory alarms: Reducing perceived annoyance with musical timbre (a randomized trial). Perioperative Care and Operating Room Management, 32, 100332.
Foley, L., Schlesinger, J., & Schutz, M. (2023). Improving detectability of auditory interfaces for medical alarms through temporal variation in amplitude envelope. British Journal of Anaesthesia, 130 (3), 351–359
Foley, L., Schlesinger, J., & Schutz, M. (2022). More detectable, less annoying: Temporal variation in amplitude envelope and spectral content improves auditory interface efficacy. The Journal of the Acoustical Society of America151(5), 3189-3196.
Foley, L., Schutz, M. (2021). High time for temporal variation: improving sonic interaction with auditory interfaces. IEEE Signal Process. Mag.
Sreetharan, S., Schlesinger, J. & Schutz, M. (2021) Decaying amplitude envelopes reduce alarm annoyance: Exploring new approaches to improving auditory interfaces. Applied Ergonomics, 96.
Foley, L., Anderson, C. J., & Schutz, M. (2020). Re-Sounding Alarms: Designing Ergonomic Auditory Interfaces by Embracing Musical Insights. Healthcare8(4), 389.
Sreetharan, S., & Schutz, M. (2019). Improving Human-Computer Interface Design through Application of Basic Research on Audiovisual Integration and Amplitude Envelope. Multimodal Technologies and Interaction.
Schutz, M., & Stefanucci, J. (2019). Hearing value: Exploring the effects of amplitude envelope on consumer preference. Ergonomics in Design: The Quarterly of Human Factors Applications, 27(1), 16–19.
Gillard, J. & Schutz, M. (2016). Composing alarms: Considering the musical aspects of auditory alarm design. Neurocase, 22(6), 566–576.
Schutz, M. (2016). Clarifying amplitude envelope’s crucial role in auditory perception. Canadian Acoustics, 44(2), 42–43.
Schutz, M., & Vaisberg, J. (2014). Surveying the temporal structure of sounds used in Music Perception. Music Perception, 31(3), 288–296.
Vallet, G., Shore, D., & Schutz, M. (2014). Exploring the role of amplitude envelope in duration estimation. Perception, 43, 616–630.

Basic Auditory Perception

Bak, K., Chan, G. S., Schutz, M., & Campos, J. L. (2021). Perceptions of Audio-Visual Impact Events in Younger and Older Adults. Multisensory Research1(aop), 1–30.
Schutz, M. & Gillard, J. (2020). On the generalization of tones: A detailed exploration of non-speech auditory perception stimuli. Scientific Reports10, 1–14.
Schutz, M. (2019). Acoustic Structure and Musical Function: Musical Notes Informing Auditory Research. The Oxford Handbook of Music and Neuroscience. Michael Thaut and Donald Hodges, Eds.
Schutz, M., Stefanucci, J., Baum, S., & Roth, A. (2017). Name that percussive tune: Associative memory and amplitude envelope. Quarterly Journal of Experimental Psychology, 70(7), 1323–1343.
Ng, M., & Schutz, M. (2017). Seeing sound: A new tool for teaching music perception principles. Canadian Acoustics45(3), 104–105.
MAESTRO tool: https://maplelab.net/maestro/
Chuen, L., & Schutz, M. (2016). The unity assumption facilitates cross-modal binding of musical, non-speech stimuli: The role of spectral and amplitude envelope cues. Attention, Perception, & Psychophysics, 78(5), 1512–1528.
Schutz, M., & Vaisberg, J. (2014). Surveying the temporal structure of sounds used in Music Perception. Music Perception, 31(3), 288–296.
Vallet, G., Shore, D., & Schutz, M. (2014). Exploring the role of amplitude envelope in duration estimation. Perception, 43, 616–630.
Schutz, M., & Kubovy, M. (2009). Deconstructing a musical illusion: Point-light representations capture salient properties of impact motions. Canadian Acoustics, 37, 23–28.
Schutz, M., & Kubovy, M. (2009). Causality and cross-modal integration. Journal of Experimental Psychology: Human Perception and Performance, 35, 1791–1810.
Schutz, M., & Lipscomb, S. D. (2007). Hearing gestures, seeing music: Vision influences perceived tone duration. Perception, 36, 888–897.

Musical Emotion

Anderson, C. J., & Schutz, M. (2023). Understanding Feature Importance in Musical Works: Unpacking Predictive Contributions to Cluster Analyses. Music & Science, 6.
Anderson, C. J., & Schutz, M. (2022). Exploring historic changes in musical communication: Deconstructing emotional cues in preludes by Bach and Chopin. Psychology of Music, 50 (5), 1424–1442.
Battcock, A., & Schutz, M. (2022). Emotion and expertise: how listeners with formal music training use cues to perceive emotion. Psychological Research86, 66–86.
Battcock, A., & Schutz, M. (2021).  Individualized interpretation: Exploring structural and interpretive effects on evaluations of emotional content in Bach’s Well Tempered Clavier. Journal of New Music Research, 50(5), 447–468.
Kelly, B. O., Anderson, C. J., & Schutz, M. (2021). Exploring changes in the emotional classification of music between eras. Auditory Perception & Cognition, 4(1-2)121–131.
Battcock, A., & Schutz, M. (2019). Acoustically Expressing Affect. Music Perception, 37(1), 66–91.
Schutz, M. (2017). Acoustic Constraints and Musical Consequences: Exploring Composers’ Use of Cues for Musical Emotion. Frontiers in Psychology, 8, 1–10. https://doi.org/10.3389/fpsyg.2017.01402
Poon, M., & Schutz, M. (2015). Cueing musical emotions: An empirical analysis of 24-piece sets by Bach and Chopin documents parallels with emotional speech. Frontiers in Psychology (Cognition), 6, 1419.